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Conditions are given under which one can select the input signal of a 
system so that a given periodic process may be generated approximately. 
The problem investigated here is related to the theory of programmed 
control [ 1. P. 231 1 since it considers the possibility of finding pro- 
gramming functions which will guarantee a stable periodic programming 
process. Under realistic conditions the programming functions can be 
given only approximately. This article presents estimates of the admis- 
sible errors of the required programming functions. From the strictly 
mathematical viewpoint, the problem can be reduced to the formulation of 
the conditions for stability of the periodic motion in the presence of 
constantly acting disturbances bounded in norm, An estimate of the abso- 
lute value, of the mean absolute value, and of the mean-square value of 
the above-indicated admissible error is given. The case when the con- 
structed periodic motion is discontinuous is also considered. A part of 
the basic results is carried over to the case of a non-periodic approxi- 
mate motion. 

1. Let us consider the differential equation 

2 = fi (x1, . . * , %I, t) + ‘pi (t) (i = 1, . . . ,n)] (1-l) 

Under the assumption that all the functions fi(x1, . . ., xn, t) are 
periodic functions of time with period o, we set ourselves the problem 
of selecting such periodic functions qSi(t) that a given system of 
periodic functions xi = $i(t) (i = 1, . . . , n) of period o may be a solu- 
tion of the system (1.1). Th e solution of this simple problem has the 
form 

‘pi (t) = $i’ (t) - fi ($1 (t)Y . * * Y $I (t)t t, (i = 1,. . .,n) (l-2) 

In practice it may, however, turn out to be entirely inapplicable. 
Indeed, if the system of the functions xi = $i( t) defines some 
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prograrmning process, then this process can be realized only in case the 
process is stable relative to the initial disturbances. Furthermore, 
under real conditions, the prograrrraing functions cpi(t) are selected from 
some narrowly prescribed class of functions, for example, from the class 
of polynomials, trigonometric polynomials, piece-wise constant discon- 
tinuous functions, and so on. 

Equations (1.2) can, therefore, be satisfied only approximately with 
a certain error. In case the progrsmming functions cpi(t) are expressed 
as linear combinations of functions from a system of mutually orthogonal 
functions, it is simple to compute the mean-square error of the approxi- 
mation. It is also known that a knowledge of the absolute value of the 
error makes it possible to obtain an estimate of the mean value and of 
the mean-square value of the error, while the knowledge of the mean-square 
value of the error permits one to obtain an estimate of its mean value. 

Thus, the investigation of the problem on the preservation of the 
stability of the periodic motion of the system (1.1) under constant dis- 
turbances, bounded in the mean or in their mean-square value, is of 
special interest. Ihe study of disturbances, which are bounded in the 
mean, can be carried over to the case of shocks or a-type of disturbances, 
as will be shown in the sequel. 

Fox the general case, the stability of motion under constantly acting 
disturbances bounded in the mean was considered in the work of Germaidze 
and Krasovskii ES! 1 , Questions on the stability of the periodic motion 
under constantly acting disturbances bounded in their absolute value were 
considered in [ 3,4 ] , 

Problems on the existence and on the preservation and stability of 
periodic motion bounded in the modulus of external forces were considered 
in IS,6 1 on the basis of Liapunov’s function. In the present article, 
estimates of the absolute mean and mean-square values of the admissible 
error of the approximating programning functions are obtained in a differ- 
ent way. Here, the approximating periodic motion r has the following pro- 
perties. 

1) All trajectories which start for t = to in a small enough neighbor- 
hood of I7 do not leave an c-neighborhood of I’when t > t,,. 

2) In the ~-neighborhood of l’ there exists an asymptotically stable 
periodic motion whose region of attraction contains some neighborhood 
of r. 

Therefore, if the error of the approximation lies within admissible 
bounds, then the presence of a small enough error in the choice of the 
initial conditions will not prevent the approximate realization of the 
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periodic process, since the obtained process 
ally a periodic motion close to the assigned 

2. Let us assume first that the functions 

will approach asymptotic- 
one. 

q!~~( t), which determine the 
periodic motion r, are continuous and piece-wise differentiable. 

Making the following change of variables in the system (1.1) 

we obtain 

czz. 

z. : xi - qi (Q 1 (i==l,...,n) 

;rt’ = I(% + *1(t), * * 9 , &I f- $\l(1), t) -I- ‘pi (t) - q%‘(t) (i = 1,. .,n) 

Introducing the notation 

Zi (Zi, a * . 7 zn, 4 = fi (31 -i $1(L), * . * , &I + qh(q, t) - ji ($1 (t), . . * , 9, (Q, 0 

r’i (t) = ‘pi (0 - q’(t) + i’i ($I(& * * * , %I ($ t) (i = 1, . ) n) 

we can express the system (1.1) in the form 

dz. 
L = Zi (21, e . . ) Zn7 t) -t Ti (t) 
dt 

(i = I,. . ) u) (‘1.1) 

Equations (2.1) represent, obviously, the system of equations of the 
disturbed motion; the functions ri(t) determine the error of approxima- 
tion of the approximating functions c$~, while the deviation from zero of 
the solution zi(t) of the system (2.1) coincides with the deviation of 
the solution xi(t) of the system (1.1) from the assigned periodic motion. 

By first separating in some way the linear part from the function 

‘i(‘1’ ‘.‘) ‘n, t), we can write (2.1) in the form 

2 = i aik(t)Zk + &(z,, . . . , zn, t) + ri (t) (i = 19. . . 1 I&) (2.2) 
k=l 

or in the matrix-vector form as 

dz / dt = A (t) z + R (z, t) -i- r(t) (2.3) 

Let us determine the norm of the vector z and the norm of the matrix 
A by the following relation*: 

l The norm of the vector z may be defined by any other of the known 
methods, and the norm of the matrix A can then be defined by the rela- 
tion 11 A 11 = max II AZ )I, when II z 11 = 1. In this case, all preceding 
remarks remain valid [ 7. p. 111 1 . 
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Let D be the region given by the inequalities 11 z 11 < l , 0 G t < m, 
and. let us impose the following restrictions on the system (2:3): 

al The functions A(t), R(z, t) and r(t) are periodic in t and of 
period o. 

b) In the region D, the function R(z, t) satisfies the Lipschitz con- 

dition 

c) For a fixed z, the functions aik(t) and Ri(Z, t) are Lebesgue 
integrable in absolute value on the interval IO, o 1 , 

d) The functions ri2(t) are Lebesgue integrable on the interval 

10, 01. 

e) There exists a fundamental matrix b’(t, r) of the system Z’=A(t)Z, 
which satisfies the conditions W(r) r 1 = E (E is the unit matrix) 

IIW(t,~)II\<Be-a(t--r), B>l, a>~ 

f) lhe quantity 

h=a-LB>0 

We call attention to the fact that in view of a theorem of 
Caratheodory 18, p. 120 1 th e conditions (b), (cl and (d) guarantee the 
existence of a unique solution of the system (2.31 in the region D. 

Let us introduce the notation p(t) = 11 r(t) II. 

Theorem 2.1. Let the conditions ‘(a) to (fl and one of the following 
conditions be satisfied: 

(4 p0 ==,=&P (t) < -& h 

(‘3 p1 = [p (t) dt < & e--ho (1 - e--ho) 

((7 pz = ii p”(t) dt)‘/.+(*j’*ci -e--Aa) 
0 
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Let S = r/ZB. Then the following assertions are true: 

1) Every solution z(t) of the system (2.31 which is such that 
II z(t,) 11 < 6 will not 1 eave the region D if t > t, > 0. 

2) In the region D, there exists an asymptotically stable periodic 
trajectory which attracts all other trajectories that come out of the 
fegi on /I z I/ < 6, t > 0. 

We shall now prove the theorem. Obviously, without destroying the 
generality, we may assume that t0 = 0. By Cauchy’s formula we have 

Hence, on the basis of (b) and (e) we obtain 

.t 

z (t) = w (t, 0) z. -; s w (t, z) (R (2, z) -i- r(T)) dt (2.4) 
0 

(2.5) 

Setting u(t) = ea(*) 11 z(t) 11, we rewrite (2.5) in the form 

If, (4 < B II 20 II + B \ (Au (-4 + carp (z>f dt 
6 

(2.6) 

From this it follows in accordance with Lernna 1.1 of T.9 I that 

Hence 

u (t) < BeBLt (2.7) 

0 

where 
II z (t) II < % (t) + Q! @) (2.8) 

q (t) = I&+~ 11 z. /I, CD, (t) = Be-““\ p (r) ehrdt 

0 

Assuming that 11 z0 11 < 6 = 6/2B, we have Q!,(t) < C/2 if t > 0. We 
shall show that if one of the conditions (A), (B) or (C) is satisfied 
then sup Q,(t) < 8 if t > 0. 

Suppose that condition (A) holds. In this case we have 
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Since 

we deduce at once the required result. 

Suppose that condition (8) holds, and let t = ko + I 0, 0 Q r a < o. In 
this case we have 

Ibis yields the required result. 

Suppose, finally, that condition (C) holds. Then, obviously we have 

k (i+lb 

which again yields the required result. 

And thus, if one of the conditions (A), (Bl or (C) is satisfied, we 
find that sup $(t) < S if t >: 0, and, furthermore, that Q,(t) < E/Z?. 
Hence, if t > 0 we have I\-z(t) 11-i 6 + c/2 < t, which proves the first 
part of the theorem. 

In order to establish the existence of a periodic solution we must 
give a large enough number N >’ 1 such that $(t) ;4 6(N - 1)/N. Since 
sup $(t) < 6, it is obvious that such a number N always exists. Next we 
find a number 

2’ =mo>h-llnBN 

where m is a positive number. 

Since Q,(T) < S!N if t >. 0, it follows that If..z(I’) /I--< S if 
ljX(O) 11.9 6. 

Hence, the mapping z = z(T) transforms the region II- z If,< S into a 
part of itself. In order to apply now a well-known principle of con- 
traction ma pings I 10, p. 90 I , we consider two points za and y,, in the 
region II ‘2 K. < 6. ‘lbe difference between two solutions of the system 
(2.3) determined by these points satisfies the integral equation 

2 (9 - Y (4 = w (t, 0) (20 - yo) + \ J-v (t, z) (R (2, z) - R (y, z)) d* 
0 
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From this we obtain the inequality 

II z (t) - Y PI II < &--af II 20 - Yo II + BL i e-+-5) 11 z (z) - y (T) 11 dz (2.9) 
0 

Introducing the notation u(t) = 11 z(t) - y(t) Ilea’, we obtain 

From this and from a known lemma 19 1 #it follows that 

Thus, we finally obtain 

II 2 (4 - Y (t) II < B II 20 - Yo II fer 

and since Be -Xt G l/N 

II 2 CT) - Y(T) II < ; II %I - Yell 

(2.10) 

This shows that the conditions for the applicability of the principle 

of contraction mappings are satisfied. Hence, there exists in the region 

II z II.< 6 a unique point y,, such that y(T) = y(0) = y,,. This point deter- 
mines for us the required periodic motion. Since y(o) = y(o + T), it 

follows that the point y(o), being a fixed point, must coincide with 

y(0). Hence, the period of y(t) is o. 'Ihe asymptotic stability of y(t) 

follows from (2.10). 

3. Let us next consider the case when the periodic motion xi = pi 
which is to be realized may have a finite number of discontinuities of 

the first kind. In this case the approximating programming functions must 

have the form 

(Pi @) = q%'(t) - fi(% P), - * * 9 9x(0, t) (i = 1,. . . ( n) (3.1) 

at those points where the derivative qbi’(t) exists, and 

‘pi (t) = Qd (t - tk) (3.2) 

at the discontinuity points tl, . . . . t,. Here viA is the saltus of the 

function hi(t) at t = tb; 8(t - t,) is the Dirac function. 

Under the assumption that the function +i(t) will be approximated by 

functions of the same type, let us express the error in the approximation 
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in the form 

m 

r+_ (t) = Q” (t) -t_ x rik6 (t - tk) (i = 1,. . (II) (3.3) 
k=l 

where ri“( t) is a function whose absolute value is integrable on [O, o I . 

Making use of the change of variables z i = x . - pi in the system 
(l.l), we are again led to the system (2.1), an: by separating in some 
way the linear part we obtain again the system (2.3). It should, however, 
be mentioned that even in the case when the functions fi(xll . . . . x,, t) 
of the system (1.1) are infinitely often differentiable with respect to 

*1, ***, x,, the matrix A(t) and the function R(z,t) may turn out to be 
dIscontin&s functions. In the more general 
of the first approximation system and of the 
problem of this system, one should take into 
obtained by Aizerman and Gantmakher 111 1, 

case of the determination 
solution of the stability 
consideration the results 

Let 
m 

P (t) = P’(t) + x 7k6 ct - lk) 
k=l 

P-4) 

where 

Theorem. Suppose that the conditions (a), (b), (c), (e) and (f) are 
satisfied and that the functions ri(t) are representable in the form 
(3.3). Let 6 = c /2 B, and let us suppose that the inequality 

Pl=T” P (t) dt =fP”(t)dt+ jj ~k<&t+(&+) 
J 

0 0” k=l 

is valid. 

Under these hypotheses both assertions of Theorem 2.1 are true. 

The proof of Iheorem 3.1 is essentially a repetition of the proof of 
Theorem 2.1. Indeed, Formula (2.4) obviously applies in the present case 
if one makes use of the rule for the integration of expressions involv- 
ing the Dirac function. 

‘Ihe only questionable step is the transition to the limit from the in- 
equality (2.6) to the inequality (2.7). Let us show that this step is 
valid. Since for t = 0, the inequality (2.7) is true, and since both 
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sides of the inequality are continuous from the right, this inequality 

will be valid if 0 <t < h, where h is some positive number. 

Let r,, be the infimum of the numbers t for which (2.7) is not true. 

Because of the fact that both sides of (2.7) are continuous from the 

right, we have 

On the other hand, setting t = r. in (2.6), and replacing 

integral sign by a larger quantity from (2.7), we obtain 

(3.5) 

u(t) under the 

IL (zo) < BeBLTo 11 z,, 11 + B2L i eBLt \ p (T)~(+--BL)~ dt + B 

0 0 

Applying to the second integral the rule of differentiation by parts 

(which is valid under the given conditions, since we are dealing 

essentially with a Stieltjes integral 

T. 

c ea'p(z)dr 
;; 

and since the integral exists), we obtain an inequality which contradicts 

the inequality (3.5). 

From here.on the proof of Theorem 3.1 is an exact repetition of the 

proof of Iheorem 2.1. 

We call attention to the fact that theorem 3.1 can be formulated so 

that it will apply to the more general case when the programming func- 

tions +i(t) are of bounded variation. In this case, one should consider 

the equation 

z (t) = W (t, to) z. + j W (t, 7) R (5, z) dz + \ W (t, r)dG 
to to 

where the second integral is a Stieltjes integral with the integrating 

function G(t) (G,(t), . . . . G,(t)) being of bounded variation. This can 

be reduced to the previous case if one introduces the generalized func- 

tions r!(t) by defining them as ri(t) = Gi’(t) at the points where the 

derivative exists, and as ri(t) = rik8(t - tk) at the points of discon- 

tinuity of Gi(t) (rik is the saltus at the discontinuity). In the pre- 

sent case, the set of points of discontinuities of Gi(t) may be infinite 

(but denumerable). 
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An even more general approach to the problem is possible 
of the concept of a generalized differential equation which 
Kurtsveil’s [ 12 1 generalization of the Perron integral. 

415 

on the basis 
is based on 

4. Making use of the method of proof of Theorem 2.1 and of an idea 
expressed in [ 13 I , one can carry over some of the results of the indi- 
cated theorem to the case when the system (l.l), as well as the pro- 
granrning functions xi = y!~~(t), are not periodic. 

Let o be an arbitrary positive number, and let 

P(~)=llwI, ~,=~~~I$~) 

h, =og~at\m 

t+m ‘IP 

P(t) dt, h2 = sup 
b 

O.s<c0 
( \ p2 (W ) 

t 

Theorem 4.2. Suppose that the conditions (b), (c), (d), (e) and (f) 
are satisfied (except that the integrability of the corresponding func- 
tions holds on any segment t, t + w, t > 01, and suppose that at least 
one of the following inequalities is valid: 

(B’) h,<&d’(l -e-ho) 

(C’> h2< s(sl)%(l -e--Aw) 

Then every solution z(t) of the system (2.3) which satisfies the con- 
dition 

Ilz(O) II < s/2B 

will not leave the region D when t > 0. 

The proof of Theorem 4.1 is the same as the proof of the first part 
of Theorem 2.1, except for the difference that in place of the inequal- 
ity $,(t) < c/2B one has to have the inequality 

Finally, let us consider the case when the approximating (non- 
periodic) motion xi = pi has isolated discontinuities of the first 
kind. In this case, we again assume that ri(t) can be represented in the 
form (3.3), and we define the generalized function p(t) in accordance 
with (3.4). 
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Let 

t+o-0 

- h, = sup p(t) tit 
o<t<m s 

t 

Repeating the arguments used in the proof of Theorems 2.1 and 3.1, we 

establish that if 

h, < E/2Bemh” (1 - e-A@) 

the solution z(t) of the system (2.3), under the condition that 

11 t(O) /I < ~/2B,will not leave the region D when t > 0. 

Thus, also in this last case, we can realize the desired programming 

process approximately with a accuracy of 6. 
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